3.20 \(\int \frac{(A+B x) (a+b x^2)^{5/2}}{x^2} \, dx\)

Optimal. Leaf size=136 \[ \frac{15}{8} a^2 A \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )+a^{5/2} (-B) \tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )+\frac{1}{8} a \sqrt{a+b x^2} (8 a B+15 A b x)-\frac{\left (a+b x^2\right )^{5/2} (5 A-B x)}{5 x}+\frac{1}{12} \left (a+b x^2\right )^{3/2} (4 a B+15 A b x) \]

[Out]

(a*(8*a*B + 15*A*b*x)*Sqrt[a + b*x^2])/8 + ((4*a*B + 15*A*b*x)*(a + b*x^2)^(3/2))/12 - ((5*A - B*x)*(a + b*x^2
)^(5/2))/(5*x) + (15*a^2*A*Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/8 - a^(5/2)*B*ArcTanh[Sqrt[a + b*x^2]
/Sqrt[a]]

________________________________________________________________________________________

Rubi [A]  time = 0.132421, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {813, 815, 844, 217, 206, 266, 63, 208} \[ \frac{15}{8} a^2 A \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )+a^{5/2} (-B) \tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )+\frac{1}{8} a \sqrt{a+b x^2} (8 a B+15 A b x)-\frac{\left (a+b x^2\right )^{5/2} (5 A-B x)}{5 x}+\frac{1}{12} \left (a+b x^2\right )^{3/2} (4 a B+15 A b x) \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*(a + b*x^2)^(5/2))/x^2,x]

[Out]

(a*(8*a*B + 15*A*b*x)*Sqrt[a + b*x^2])/8 + ((4*a*B + 15*A*b*x)*(a + b*x^2)^(3/2))/12 - ((5*A - B*x)*(a + b*x^2
)^(5/2))/(5*x) + (15*a^2*A*Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/8 - a^(5/2)*B*ArcTanh[Sqrt[a + b*x^2]
/Sqrt[a]]

Rule 813

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + c*x^2)^p)/(e^2*(m + 1)*(m + 2*p + 2)), x] + Di
st[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Simp[g*(2*a*e + 2*a*e*m) + (g*(2*c
*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2,
0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
!ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(A+B x) \left (a+b x^2\right )^{5/2}}{x^2} \, dx &=-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}-\frac{1}{2} \int \frac{(-2 a B-10 A b x) \left (a+b x^2\right )^{3/2}}{x} \, dx\\ &=\frac{1}{12} (4 a B+15 A b x) \left (a+b x^2\right )^{3/2}-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}-\frac{\int \frac{\left (-8 a^2 b B-30 a A b^2 x\right ) \sqrt{a+b x^2}}{x} \, dx}{8 b}\\ &=\frac{1}{8} a (8 a B+15 A b x) \sqrt{a+b x^2}+\frac{1}{12} (4 a B+15 A b x) \left (a+b x^2\right )^{3/2}-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}-\frac{\int \frac{-16 a^3 b^2 B-30 a^2 A b^3 x}{x \sqrt{a+b x^2}} \, dx}{16 b^2}\\ &=\frac{1}{8} a (8 a B+15 A b x) \sqrt{a+b x^2}+\frac{1}{12} (4 a B+15 A b x) \left (a+b x^2\right )^{3/2}-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}+\frac{1}{8} \left (15 a^2 A b\right ) \int \frac{1}{\sqrt{a+b x^2}} \, dx+\left (a^3 B\right ) \int \frac{1}{x \sqrt{a+b x^2}} \, dx\\ &=\frac{1}{8} a (8 a B+15 A b x) \sqrt{a+b x^2}+\frac{1}{12} (4 a B+15 A b x) \left (a+b x^2\right )^{3/2}-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}+\frac{1}{8} \left (15 a^2 A b\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )+\frac{1}{2} \left (a^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,x^2\right )\\ &=\frac{1}{8} a (8 a B+15 A b x) \sqrt{a+b x^2}+\frac{1}{12} (4 a B+15 A b x) \left (a+b x^2\right )^{3/2}-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}+\frac{15}{8} a^2 A \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )+\frac{\left (a^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x^2}\right )}{b}\\ &=\frac{1}{8} a (8 a B+15 A b x) \sqrt{a+b x^2}+\frac{1}{12} (4 a B+15 A b x) \left (a+b x^2\right )^{3/2}-\frac{(5 A-B x) \left (a+b x^2\right )^{5/2}}{5 x}+\frac{15}{8} a^2 A \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )-a^{5/2} B \tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right )\\ \end{align*}

Mathematica [C]  time = 0.222027, size = 117, normalized size = 0.86 \[ -\frac{a^3 A \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (-\frac{5}{2},-\frac{1}{2};\frac{1}{2};-\frac{b x^2}{a}\right )}{x \sqrt{a+b x^2}}+\frac{1}{15} B \sqrt{a+b x^2} \left (23 a^2+11 a b x^2+3 b^2 x^4\right )-a^{5/2} B \tanh ^{-1}\left (\frac{\sqrt{a+b x^2}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*(a + b*x^2)^(5/2))/x^2,x]

[Out]

(B*Sqrt[a + b*x^2]*(23*a^2 + 11*a*b*x^2 + 3*b^2*x^4))/15 - a^(5/2)*B*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]] - (a^3*A
*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[-5/2, -1/2, 1/2, -((b*x^2)/a)])/(x*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 158, normalized size = 1.2 \begin{align*}{\frac{B}{5} \left ( b{x}^{2}+a \right ) ^{{\frac{5}{2}}}}+{\frac{Ba}{3} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}-B{a}^{{\frac{5}{2}}}\ln \left ({\frac{1}{x} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{2}+a} \right ) } \right ) +B\sqrt{b{x}^{2}+a}{a}^{2}-{\frac{A}{ax} \left ( b{x}^{2}+a \right ) ^{{\frac{7}{2}}}}+{\frac{Abx}{a} \left ( b{x}^{2}+a \right ) ^{{\frac{5}{2}}}}+{\frac{5\,Abx}{4} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}+{\frac{15\,Aabx}{8}\sqrt{b{x}^{2}+a}}+{\frac{15\,A{a}^{2}}{8}\sqrt{b}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(b*x^2+a)^(5/2)/x^2,x)

[Out]

1/5*B*(b*x^2+a)^(5/2)+1/3*B*a*(b*x^2+a)^(3/2)-B*a^(5/2)*ln((2*a+2*a^(1/2)*(b*x^2+a)^(1/2))/x)+B*(b*x^2+a)^(1/2
)*a^2-A/a/x*(b*x^2+a)^(7/2)+A*b/a*x*(b*x^2+a)^(5/2)+5/4*A*b*x*(b*x^2+a)^(3/2)+15/8*A*b*a*x*(b*x^2+a)^(1/2)+15/
8*A*b^(1/2)*a^2*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b*x^2+a)^(5/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.70425, size = 1319, normalized size = 9.7 \begin{align*} \left [\frac{225 \, A a^{2} \sqrt{b} x \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) + 120 \, B a^{\frac{5}{2}} x \log \left (-\frac{b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{a} + 2 \, a}{x^{2}}\right ) + 2 \,{\left (24 \, B b^{2} x^{5} + 30 \, A b^{2} x^{4} + 88 \, B a b x^{3} + 135 \, A a b x^{2} + 184 \, B a^{2} x - 120 \, A a^{2}\right )} \sqrt{b x^{2} + a}}{240 \, x}, -\frac{225 \, A a^{2} \sqrt{-b} x \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) - 60 \, B a^{\frac{5}{2}} x \log \left (-\frac{b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{a} + 2 \, a}{x^{2}}\right ) -{\left (24 \, B b^{2} x^{5} + 30 \, A b^{2} x^{4} + 88 \, B a b x^{3} + 135 \, A a b x^{2} + 184 \, B a^{2} x - 120 \, A a^{2}\right )} \sqrt{b x^{2} + a}}{120 \, x}, \frac{240 \, B \sqrt{-a} a^{2} x \arctan \left (\frac{\sqrt{-a}}{\sqrt{b x^{2} + a}}\right ) + 225 \, A a^{2} \sqrt{b} x \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) + 2 \,{\left (24 \, B b^{2} x^{5} + 30 \, A b^{2} x^{4} + 88 \, B a b x^{3} + 135 \, A a b x^{2} + 184 \, B a^{2} x - 120 \, A a^{2}\right )} \sqrt{b x^{2} + a}}{240 \, x}, -\frac{225 \, A a^{2} \sqrt{-b} x \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) - 120 \, B \sqrt{-a} a^{2} x \arctan \left (\frac{\sqrt{-a}}{\sqrt{b x^{2} + a}}\right ) -{\left (24 \, B b^{2} x^{5} + 30 \, A b^{2} x^{4} + 88 \, B a b x^{3} + 135 \, A a b x^{2} + 184 \, B a^{2} x - 120 \, A a^{2}\right )} \sqrt{b x^{2} + a}}{120 \, x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b*x^2+a)^(5/2)/x^2,x, algorithm="fricas")

[Out]

[1/240*(225*A*a^2*sqrt(b)*x*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) + 120*B*a^(5/2)*x*log(-(b*x^2 - 2*
sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(24*B*b^2*x^5 + 30*A*b^2*x^4 + 88*B*a*b*x^3 + 135*A*a*b*x^2 + 184*B*a^
2*x - 120*A*a^2)*sqrt(b*x^2 + a))/x, -1/120*(225*A*a^2*sqrt(-b)*x*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - 60*B*a^
(5/2)*x*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) - (24*B*b^2*x^5 + 30*A*b^2*x^4 + 88*B*a*b*x^3 + 13
5*A*a*b*x^2 + 184*B*a^2*x - 120*A*a^2)*sqrt(b*x^2 + a))/x, 1/240*(240*B*sqrt(-a)*a^2*x*arctan(sqrt(-a)/sqrt(b*
x^2 + a)) + 225*A*a^2*sqrt(b)*x*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) + 2*(24*B*b^2*x^5 + 30*A*b^2*x
^4 + 88*B*a*b*x^3 + 135*A*a*b*x^2 + 184*B*a^2*x - 120*A*a^2)*sqrt(b*x^2 + a))/x, -1/120*(225*A*a^2*sqrt(-b)*x*
arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - 120*B*sqrt(-a)*a^2*x*arctan(sqrt(-a)/sqrt(b*x^2 + a)) - (24*B*b^2*x^5 + 3
0*A*b^2*x^4 + 88*B*a*b*x^3 + 135*A*a*b*x^2 + 184*B*a^2*x - 120*A*a^2)*sqrt(b*x^2 + a))/x]

________________________________________________________________________________________

Sympy [A]  time = 10.135, size = 318, normalized size = 2.34 \begin{align*} - \frac{A a^{\frac{5}{2}}}{x \sqrt{1 + \frac{b x^{2}}{a}}} + A a^{\frac{3}{2}} b x \sqrt{1 + \frac{b x^{2}}{a}} - \frac{7 A a^{\frac{3}{2}} b x}{8 \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{3 A \sqrt{a} b^{2} x^{3}}{8 \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{15 A a^{2} \sqrt{b} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{8} + \frac{A b^{3} x^{5}}{4 \sqrt{a} \sqrt{1 + \frac{b x^{2}}{a}}} - B a^{\frac{5}{2}} \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x} \right )} + \frac{B a^{3}}{\sqrt{b} x \sqrt{\frac{a}{b x^{2}} + 1}} + \frac{B a^{2} \sqrt{b} x}{\sqrt{\frac{a}{b x^{2}} + 1}} + 2 B a b \left (\begin{cases} \frac{\sqrt{a} x^{2}}{2} & \text{for}\: b = 0 \\\frac{\left (a + b x^{2}\right )^{\frac{3}{2}}}{3 b} & \text{otherwise} \end{cases}\right ) + B b^{2} \left (\begin{cases} - \frac{2 a^{2} \sqrt{a + b x^{2}}}{15 b^{2}} + \frac{a x^{2} \sqrt{a + b x^{2}}}{15 b} + \frac{x^{4} \sqrt{a + b x^{2}}}{5} & \text{for}\: b \neq 0 \\\frac{\sqrt{a} x^{4}}{4} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b*x**2+a)**(5/2)/x**2,x)

[Out]

-A*a**(5/2)/(x*sqrt(1 + b*x**2/a)) + A*a**(3/2)*b*x*sqrt(1 + b*x**2/a) - 7*A*a**(3/2)*b*x/(8*sqrt(1 + b*x**2/a
)) + 3*A*sqrt(a)*b**2*x**3/(8*sqrt(1 + b*x**2/a)) + 15*A*a**2*sqrt(b)*asinh(sqrt(b)*x/sqrt(a))/8 + A*b**3*x**5
/(4*sqrt(a)*sqrt(1 + b*x**2/a)) - B*a**(5/2)*asinh(sqrt(a)/(sqrt(b)*x)) + B*a**3/(sqrt(b)*x*sqrt(a/(b*x**2) +
1)) + B*a**2*sqrt(b)*x/sqrt(a/(b*x**2) + 1) + 2*B*a*b*Piecewise((sqrt(a)*x**2/2, Eq(b, 0)), ((a + b*x**2)**(3/
2)/(3*b), True)) + B*b**2*Piecewise((-2*a**2*sqrt(a + b*x**2)/(15*b**2) + a*x**2*sqrt(a + b*x**2)/(15*b) + x**
4*sqrt(a + b*x**2)/5, Ne(b, 0)), (sqrt(a)*x**4/4, True))

________________________________________________________________________________________

Giac [A]  time = 1.21472, size = 203, normalized size = 1.49 \begin{align*} \frac{2 \, B a^{3} \arctan \left (-\frac{\sqrt{b} x - \sqrt{b x^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} - \frac{15}{8} \, A a^{2} \sqrt{b} \log \left ({\left | -\sqrt{b} x + \sqrt{b x^{2} + a} \right |}\right ) + \frac{2 \, A a^{3} \sqrt{b}}{{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} - a} + \frac{1}{120} \,{\left (184 \, B a^{2} +{\left (135 \, A a b + 2 \,{\left (44 \, B a b + 3 \,{\left (4 \, B b^{2} x + 5 \, A b^{2}\right )} x\right )} x\right )} x\right )} \sqrt{b x^{2} + a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b*x^2+a)^(5/2)/x^2,x, algorithm="giac")

[Out]

2*B*a^3*arctan(-(sqrt(b)*x - sqrt(b*x^2 + a))/sqrt(-a))/sqrt(-a) - 15/8*A*a^2*sqrt(b)*log(abs(-sqrt(b)*x + sqr
t(b*x^2 + a))) + 2*A*a^3*sqrt(b)/((sqrt(b)*x - sqrt(b*x^2 + a))^2 - a) + 1/120*(184*B*a^2 + (135*A*a*b + 2*(44
*B*a*b + 3*(4*B*b^2*x + 5*A*b^2)*x)*x)*x)*sqrt(b*x^2 + a)